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Unit-II       Thermodynamics-II 

Syllabus: Maxwell’s Thermodynamic Relations: Thermodynamic variables, extensive and intensive 

variables. Derivation of Maxwell’s thermodynamical relations (general relationship). Applications: 

specific heat equation for Van der Waals gas, Joule-Thomson-cooling and Joule-Thomson coefficient 

for perfect and Van der Waal gas. Clausius - Clapeyron’s equation (first latent heat equation). 

Thermodynamic Potentials: Internal energy, Enthalpy, Helmholtz free energy, Gibbs free energy. 

Significance of thermodynamic potentials. Relations of thermodynamical potentials with their 

variables. First and second order phase transitions. 

Thermodynamic variables:  

The thermodynamic state of a substance is specified by some of its properties like pressure, volume, 

temperature, internal energy and entropy. These properties undergo a change when the system passes 

from one state to another. These variables are known as thermodynamic variables or co-ordinates. 

These are called macroscopic co-ordinates. They require the specification of few measurable 

properties of the system and do not require the knowledge of microscopic structure of matter 

composing the system. 

Extensive and Intensive Variables: 

An extensive variable of a system is a macroscopic parameter which describes a system in equilibrium 

and which has a value equal to the sum of its values in each part of the system. The extensive variable 

depends upon the mass or the size of the substance present in the system.  

Examples Mass, volume, internal energy, entropy, length, area, heat-capacity, electric charge, 

magnetization  etc.  

An intensive variable of a substance is a macroscopic parameter which describes the system in 

equilibrium and has the same value in any part of the system. It is independent of mass or size of the 

system. It is a characteristic of the substance present in the system. 

 Examples Pressure, temperature, viscosity, refractive index, density, specific volume, magnetic 

induction surface tension, electromotive force etc.  

Maxwell’s thermodynamical relations: 

From the two laws of thermodynamics, Maxwell was able to derive six fundamental thermodynamical 

relations.  The state of a system can be specified by any pair of quartities viz pressure (P), volume (V), 

temperature (T) and entropy (S).  In solviing any thermodynamical problem, the most suitable pair is 

chosen and the quantities constituting pair are taken as independent variables.  

From the first law of thermodynamics  

dQ  =  dU  +  dW  

dQ  =   dU + PdV                       [∵ dW = F.dx = P A.dx=PdV]  
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 ∴   dU=  dQ  -  PdV------------------(1)  

From the second law of thermodynamics 

𝑑𝑆 =  
𝑑𝑄

𝑇
  ⇒   𝑑𝑄 = 𝑇. 𝑑𝑆 

Substituting the value of dQ in equation   (1)  

dU=TdS  -   PdV----------------------(2) 

Considering S, U and V to be functions of two independent variables ‘x’ and ‘y’ [ here ‘x’ and ‘y’ can 

be any two variables out of P,V,T and S ]  

 

 

 

Substituting these values in equation (2)  

 

 

Comparing the coefficients of dx and dy, we get  

 

 

Differentiating equation (3) with respect to y and equation (4) with respect to x  

 

 

The change in internal energy brought about by changing V and T whether V is changed by dV first 

and T by dT later or vice versa in the same.  It means dU is a perfect differential.  
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Simplifying  

 

Here x and y can be any two variables out of P,V, T and S.  It is the general Maxwell’s thermodynamic 

equation.  

Applications: specific heat equation for Van der Waals gas 

Prove that  𝑪𝑷 − 𝑪𝑽 = 𝑹 (𝟏 +
𝟐𝒂

𝑽𝑹𝑻
) 

The specific heat of gas at constant pressure is given by  

 𝐶𝑃 = (
𝜕𝑄

𝜕𝑇
)

𝑃
  = 𝑇 (

𝜕𝑆

𝜕𝑇
)

𝑃
         𝑠𝑖𝑛𝑐𝑒 𝜕𝑄 = 𝑇𝜕𝑆  

And specific heat at constant volume is  

𝐶𝑉 =  (
𝜕𝑄

𝜕𝑇
)

𝑉
  = 𝑇 (

𝜕𝑆

𝜕𝑇
)

𝑉
         𝑠𝑖𝑛𝑐𝑒   𝜕𝑄 = 𝑇𝜕𝑆 

 

Now, if the entropy S is regarded as a function of T and V  and dS is a perfect differential  

𝑑𝑆 =  (
𝜕𝑆

𝜕𝑇
)

𝑉
𝑑𝑇 + (

𝜕𝑆

𝜕𝑉
)

𝑇
 𝑑𝑉        

∴   (
𝜕𝑆

𝜕𝑇
)

𝑃
=  (

𝜕𝑆

𝜕𝑇
)

𝑉
(

𝜕𝑇

𝜕𝑇
)

𝑃
+ (

𝜕𝑆

𝜕𝑉
)

𝑇
(

𝜕𝑉

𝜕𝑇
)

𝑃
              𝑂𝑟   

 𝑇 (
𝜕𝑆

𝜕𝑇
)

𝑃
= 𝑇 (

𝜕𝑆

𝜕𝑇
)

𝑉
+ 𝑇 (

𝜕𝑆

𝜕𝑉
)

𝑇
(

𝜕𝑉

𝜕𝑇
)

𝑃
              𝑏𝑢𝑡   

(
𝜕𝑆

𝜕𝑉
)

𝑇
= (

𝜕𝑃

𝜕𝑇
)

𝑉
                  𝑓𝑟𝑜𝑚  𝑀𝑎𝑥𝑤𝑞𝑒𝑙𝑙′𝑠2𝑛𝑑 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 

∴   𝑇 (
𝜕𝑆

𝜕𝑇
)

𝑃
− 𝑇 (

𝜕𝑆

𝜕𝑇
)

𝑉
= 𝑇 (

𝜕𝑃

𝜕𝑇
)

𝑉
(

𝜕𝑉

𝜕𝑇
)

𝑃
               

𝐶𝑃 − 𝐶𝑉  =  𝑇 (
𝜕𝑃

𝜕𝑇
)

𝑉
(

𝜕𝑉

𝜕𝑇
)

𝑃
… … … … … . . (1) 

For a gas obeying Vander Waal’s equation, we have  

(𝑃 +
𝑎

𝑉2) ( 𝑉 − 𝑏) = 𝑅𝑇 … … … … … … … … (1)  

Where a and b are constants and the other quantities have their usual meaning. Equation (2) can be 

written as 

(𝑃 +
𝑎

𝑣2
) =  

𝑅𝑇

(𝑉 − 𝑏)
… … … … … (3) 
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Differentiating equation (3) w,r.t T, Keeping the volume constant  

(
𝜕𝑃

𝜕𝑇
)

𝑉
=  

𝑅

(𝑉 − 𝑏)
 

Differentiating equation (3) w,r.t T, Keeping  the pressure  constant  

(0 −
2𝑎

𝑉2
) (

𝜕𝑉

𝜕𝑇
)

𝑃
=

𝑅𝑇

( 𝑉 − 𝑏)2
(

𝜕𝑉

𝜕𝑇
)

𝑃
+

𝑅

(𝑉 − 𝑏)
                           𝑂𝑟 

(
𝜕𝑉

𝜕𝑇
)  [

𝑅𝑇

( 𝑉 − 𝑏)2
 −

2𝑎

𝑉2
] =  

𝑅

(𝑉 − 𝑏)
                           𝑂𝑟 

(
𝜕𝑉

𝜕𝑇
)

𝑃
=

𝑅
(𝑉 − 𝑏)

[
𝑅𝑇

( 𝑉 − 𝑏)2  −
2𝑎
𝑉2]

                            

Substituting these values of (
𝜕𝑃

𝜕𝑇
)

𝑉
 and (

𝜕𝑉

𝜕𝑇
)

𝑃
 in equation (1) we get,  

𝐶𝑃 − 𝐶𝑉 =
𝑇  ( 

𝑅
(𝑉 − 𝑏) )

𝑅
(𝑉 − 𝑏)

[
𝑅𝑇

( 𝑉 − 𝑏)2  −
2𝑎
𝑉2]

   =     
 𝑅  

𝑅𝑇
 ( 𝑉 − 𝑏)2 

[
𝑅𝑇

( 𝑉 − 𝑏)2] [ 1 − (  
2𝑎
𝑉2 )

( 𝑉 − 𝑏)2

𝑅𝑇 ]
   

=     
 𝑅   

[ 1 − (  
2𝑎
𝑉2 )

( 𝑉 − 𝑏)2

𝑅𝑇 ]
                     

Compared to V, b is too small and may be neglected. 

∴ 𝐶𝑃 − 𝐶𝑉 =
 𝑅   

[ 1 − (  
2𝑎
𝑉3 )

𝑉2

𝑅𝑇]
=   

 𝑅   

[ 1 − ( 
2𝑎

𝑅𝑇𝑉  )]
= 𝑅(1 −  

2𝑎

𝑉𝑅𝑇
)−1  

Expanding   binomially and neglecting a in higher powers, as a is very small as compared to V, we get     

𝑪𝑷 − 𝑪𝑽 = 𝑹 (𝟏 +
𝟐𝒂

𝑽𝑹𝑻
) 

Joule-Thomson-cooling: 

As we know, in Joule-Thomson porous plug experiment, if a gas at constant high pressure is forced 

through a porous plug to a region of constant low pressure, the temperature of escaping gas changes. 

This is called Joule-Thomson effect. 

 Due to throttling, the gas suffers expansion. Although there is a pressure difference on two sides of the 

porous plug, the enthalpy H of the gas remains constant. This is the necessary condition i.e.  

H = U+ PV= a constant 

 dH = dU + PdV + VdP =0 

 But  dQ = dU + PdV      ( I law of Thermodynamics)  

 also     dQ = T.dS                   ( II law of thermodynamics)  

∴   𝑑𝑄 =  𝑇. 𝑑𝑆 + 𝑉𝑑𝑃 = 0 … … … … … … … … … . (1) 

Now dS being a perfect differential and S is a function of P and T ie. S=f(P ,T), we have 
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𝑑𝑆 = (
𝜕𝑆

𝜕𝑇
)

𝑃
𝑑𝑇 + (

𝜕𝑆

𝜕𝑃
)

𝑇
𝑑𝑃                       𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 𝑡ℎ𝑖𝑠 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1)  

𝑇 (
𝜕𝑆

𝜕𝑇
)

𝑃
𝑑𝑇 + [  𝑇 (

𝜕𝑆

𝜕𝑃
)

𝑇
+ 𝑉] 𝑑𝑃 = 0        

𝑁𝑜𝑤,            𝐶𝑃 = (
𝜕𝑄

𝜕𝑇
)

𝑃
  = 𝑇 (

𝜕𝑆

𝜕𝑇
)

𝑃
         𝑠𝑖𝑛𝑐𝑒 𝜕𝑄 = 𝑇𝜕𝑆 

 where Cp is specific heat at constant pressure.  

    ∴   𝐶𝑃 𝑑𝑇 =  − [𝑇 (
𝜕𝑆

𝜕𝑃
)

𝑇
+  𝑉] 𝑑𝑃 − − − − − − − − − − − (2)         

According to Maxwell’s fourth thermodynamical relation 

(
𝜕𝑆

𝜕𝑃
)

𝑇
=  − (

𝜕𝑉

𝜕𝑇
)

𝑃
 

    ∴   𝐶𝑃 𝑑𝑇 =  [𝑇 (
𝜕𝑉

𝜕𝑇
)

𝑃
−  𝑉] 𝑑𝑃                      𝑂𝑅   

 𝒅𝑻 =
𝟏

𝑪𝑷
 [𝑻 (

𝝏𝑽

𝝏𝑻
)

𝑷
−  𝑽] 𝒅𝑷 − − − − − − − −(𝟑)          

Joule-Thomson coefficient (µ) for perfect and Vander Waals gas:. 

The Joule-Thomson coefficient (µ) is given by  

 µ = (
𝜕𝑇

𝜕𝑃
)

𝐻
  =

1

𝐶𝑃
 [𝑇 (

𝜕𝑉

𝜕𝑇
)

𝑃
−  𝑉] 

Now, (
𝜕𝑉

𝜕𝑇
)

𝑃
=  𝛼𝑉     where 𝛼 is the coefficient of increase of volume at constant pressure, 

because 𝛼 =  
1

𝑉
(

𝜕𝑉

𝜕𝑇
)

𝑃
 

∴ 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3)𝑏𝑒𝑐𝑜𝑚𝑒𝑠  𝒅𝑻 =  
𝑽

𝑪𝑷
 [ 𝜶𝑻 − 𝟏]𝒅𝑻 − − − − − − − − − −(4) 

Equation (4) gives the change in temperature due to Joule-Thomson effect.  

Here dP represents a fall in pressure in porous plug experiment and it is always a negative quantity All 

other quantities in equation (4) are positive. Hence 

a. There is cooling effect i.e. dT is negative if (𝛼𝑇 − 1) is + ve or T> 1.  

b.  There is neither a cooling nor a heating effect ie. dT =0 when (𝛼𝑇 − 1)=0   or 𝛼𝑇 = 1  

c. There is a heating effect i.e. dT is positive if (𝛼𝑇 − 1) is - ve or T < 1 

Let us apply the thermo dynamical treatment of heating and cooling effect to a perfect gas and Vander 

Walls gas. 

For a perfect gas:  According to perfect gas equation           PV= RT 

At constant pressure  𝑃𝜕𝑉 = 𝑅𝜕𝑇 

∴  (
𝜕𝑉

𝜕𝑇
)

𝑃
=

𝑅

𝑃
         𝑂𝑟   𝑇 (

𝜕𝑉

𝜕𝑇
)

𝑃
=

𝑅𝑇

𝑃
= 𝑉  
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𝐻𝑒𝑛𝑐𝑒  𝑇 [ (
𝜕𝑉

𝜕𝑇
)

𝑃
−  𝑉] = 0 

𝑢𝑠𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3)𝑤𝑒 ℎ𝑎𝑣𝑒  𝑓𝑜𝑟 𝑎 𝑝𝑒𝑟𝑓𝑒𝑐𝑡 𝑔𝑎𝑠 , 𝑑𝑇 = 0 

In other words, there is no Joule-Thomson effect for a perfect gas. Hence, the porous plug experiment 

provides us a method to decide whether the given gas is perfect or not. For a perfect gas, the Joule-

Thomson coefficient (µ) is zero. 

∴   µ = (
𝜕𝑇

𝜕𝑃
)

𝐻
  =

1

𝐶𝑃
 [𝑇 (

𝜕𝑉

𝜕𝑇
)

𝑃
−  𝑉] = 0 

For Vander Walls gas: Van der Waals equation for one mole of a real gas is given by 

(𝑃 +
𝑎

𝑉2
) ( 𝑉 − 𝑏) = 𝑅𝑇 … … … … … … … … (1)                 𝑂𝑟 

𝑃𝑉 = −𝑃𝑏 +  
𝑎

𝑉
−

𝑎𝑏

𝑉2
= 𝑅𝑇 

Since both the Van der Waals' constants a and b are very small quantities, their product ab is very small 

as compared to V2 and hence 
𝑎𝑏

𝑉2 can be neglected. 

∴  𝑃𝑉 = −𝑃𝑏 +  
𝑎

𝑉
 = 𝑅𝑇 

Differentiating both sides with respect to T, keeping p constant, we get.  

𝑃 (
𝜕𝑉

𝜕𝑇
)

𝑃
−

𝑎

𝑉2
(

𝜕𝑉

𝜕𝑇
)

𝑃
= 𝑅                              𝑂𝑟 

(
𝜕𝑉

𝜕𝑇
)

𝑃

〈𝑃 −
𝑎

𝑉2
〉 = 𝑅                               𝑂𝑟    

(
𝝏𝑽

𝝏𝑻
)

𝑷
=  

𝑹

〈𝑷 −
𝒂

𝑽𝟐〉
 … … … … … … … … … … (𝟐) 

From equation (1)  

𝑃 =
𝑅𝑇

𝑉−𝑏
−

𝑎

𝑉2   Substitute the value of P in equation (2)  

(
𝜕𝑉

𝜕𝑇
)

𝑃
=  

𝑅

〈
𝑅𝑇

𝑉 − 𝑏 −
𝑎

𝑉2 −
𝑎

𝑉2〉
=

𝑅

〈
𝑅𝑇

𝑉 − 𝑏 −
2𝑎
𝑉2〉

=
𝑅( 𝑉 − 𝑏)

〈 𝑅𝑇 −
2𝑎( 𝑉 − 𝑏)

𝑉2 〉

=
𝑅( 𝑉 − 𝑏)

〈 𝑅𝑇 −
2𝑎
𝑉

〉
    𝑠𝑖𝑛𝑐𝑒 𝑏 𝑖𝑠 𝑣𝑒𝑟𝑦 𝑠𝑚𝑎𝑙𝑙 , 𝑉 − 𝑏 = 𝑉   

∴ 𝑇 (
𝜕𝑉

𝜕𝑇
)

𝑃
=

𝑅𝑇( 𝑉 − 𝑏)

〈 𝑅𝑇 −
2𝑎
𝑉

〉
 =  

 𝑉 − 𝑏

〈 1 −
2𝑎

𝑉𝑅𝑇
〉
   

 =   (𝑉 − 𝑏)(1 −  
2𝑎

𝑉𝑅𝑇
)−1  

=   (𝑉 − 𝑏) (1 +
2𝑎

𝑉𝑅𝑇
) 
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Neglecting squares and higher powers of    
2𝑎

𝑉𝑅𝑇
  𝑎𝑠   

2𝑎

𝑉𝑅𝑇
 ≪ 1 

∴          𝑇 (
𝜕𝑉

𝜕𝑇
)

𝑃
= (𝑉 − 𝑏) (1 +

2𝑎

𝑉𝑅𝑇
) 

=   𝑉 − 𝑏 −  
2𝑎 ( 𝑉 − 𝑏)

𝑉𝑅𝑇
  

= 𝑉 − 𝑏 +
2𝑎

𝑅𝑇
              [ as b is very small V-b= V] 

∴     𝑇 (
𝜕𝑉

𝜕𝑇
)

𝑃
− 𝑉 =

2𝑎

𝑅𝑇
− 𝑏        … … … … … … . (3)     

According to Joule-Thomson effect, the change in temperature 

𝑑𝑇 =
1

𝐶𝑃
 [𝑇 (

𝜕𝑉

𝜕𝑇
)

𝑃
−  𝑉] 𝑑𝑃  

Where CP is molar specific heat at constant pressure 

Substitute the value of [𝑇 (
𝜕𝑉

𝜕𝑇
)

𝑃
−  𝑉]  𝑓𝑟𝑜𝑚 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  (3), 𝑤𝑒 𝑔𝑒𝑡 

𝑑𝑇 =
1

𝐶𝑃
 [

2𝑎

𝑅𝑇
− 𝑏 ] 𝑑𝑃  

𝒅𝑻 =
𝒅𝑷 

𝑪𝑷
 [

𝟐𝒂

𝑹𝑻
− 𝒃 ]       … … … … … . (𝟒) 

Equation (4) gives the change in temperature for Van der Waals gas. i.e. real gas due to Joule Thomson 

effect. Thus, we conclude that, 

 (𝑖) 𝑖𝑓 
𝟐𝒂

𝑹𝑻
>

𝑏  𝑖𝑒 𝑇 𝑖𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 
2𝑎

𝑅𝑇
, 𝑡ℎ𝑒𝑛 𝜕𝑇 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 . 𝑆𝑖𝑛𝑐𝑒 𝜕𝑃 𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒. 𝐻𝑒𝑛𝑐𝑒 𝑡ℎ𝑒𝑟𝑒 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑎 𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑒𝑓𝑓𝑒𝑐𝑡.  

(ii)    𝑖𝑓 
𝟐𝒂

𝑹𝑻
<

𝑏  𝑖𝑒 𝑇 𝑖𝑠 𝑔𝑟𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 
2𝑎

𝑅𝑇
, 𝑡ℎ𝑒𝑛 𝜕𝑇 𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 . 𝑆𝑖𝑛𝑐𝑒 𝜕𝑃 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒. 𝐻𝑒𝑛𝑐𝑒 𝑡ℎ𝑒𝑟𝑒 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑎 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑒𝑓𝑓𝑒𝑐𝑡.     

(iii)   𝑖𝑓 
𝟐𝒂

𝑹𝑻
= 𝑏   𝑜𝑟  𝑇 =  

2𝑎

𝑅𝑇
, 𝑡ℎ𝑒𝑛 𝜕𝑇 = 0 . , 𝑡ℎ𝑒𝑟𝑒 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑛𝑜 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛  𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒.    

Thermodynamic Potentials: 

The state of a system can be completely described by any two of the five state variables P.V,T.S and U. 

Out of these, U the internal energy state variable is determined by using the remaining four as proved 

below:  

According to first law of thermodynamics, 𝑑𝑄 = 𝑑𝑈 + 𝑃𝑑𝑉  and from the second law of 

thermodynamics, dQ = TdS  

dU + PdV = TdS   or   dU = TdS- PdV 

Thus, U can be eliminated and we are left with four state variables P, V, T and S only. This is the 

reason, why only four state variables are defined. Taking two of the four state variables P,V,Tand S at a 

time, there are six possible pairs, i.e. (P, V), (P T), (P, S), (V, T), (V, S) and (T, S). The pair (P. V is 
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connected with composite and in exact differential quantity dW as dW= PdV and pair (T, S) with dQ  

as dQ =Tds. Hence these two pairs can be eliminated. Thus, we are left with four pairs of 

thermodynamical variables (P ,T ), (P, S), (V, T) and (V, S). Corresponding to each pair, we can write a 

thermodynamical relation. These four thermodynamical relations are known as Maxwell's 

thermodynamic potentials. There are four thermodynamic potentials 

 (i) Internal energy, U   (ii) Enthalpy H = U + PV  

 (iii) Helmholtz free energy, F = U- TS       and        (iv) Gibbs function G= U + PV- TS  

Each of Maxwell's four thermodynamical relations can be derived from one of these thermodynamic 

potentials U, EH and G. Hence, only four thermodynamic potentials are defined. 

 1, Internal Energy U:  The internal energy or the intrinsic energy is the total energy of a system. 

According to the first law of thermodynamics,  

𝑑𝑄 =  𝑑𝑈 +  𝑑𝑊 =  𝑑𝑈 +  𝑃𝑑𝑉  

∴ 𝑑𝑈 = 𝑑𝑄 − 𝑃𝑑𝑉 … … … (1)   

From second law of thermodynamics,  

𝑑𝑄 = 𝑇𝑑𝑆   substituting for  dQ in eqn. (1) 

𝒅𝑼 = 𝑻𝒅𝑺 − 𝑷𝒅𝑽 … … … … … … … (𝟐) 

This equation gives the change in internal energy of the system in terms of four thermodynamical 

variables P V T and S. Internal energy (U) is called first thermodynamical potential. 

 (a) For an adiabatic process:     𝑑𝑄 = 0               ∴ 𝑑𝑈 =  − 𝑃𝑑𝑉    

 i.e. the work done by the system in an aciabatic process is at the expense of its internal energy. 

 (b) For an isochoric adiabatic process: 𝑑𝑉 = 0       𝑎𝑛𝑑 𝑑𝑄 = 0        ∴ 𝑑𝑈 = 0  𝑜𝑟   𝑈 = 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 . 

i.e. the internal energy of system remains constant in an isochoric adiabatic process.  

2. Enthalpy H: . This is known as the total heat and is given by H = U+ PV 

 As U, P and V are state variables, H is also a state variable. H has dimensions of energy. If the system 

undergoes an infinitesimal reversible process,  

Then change in enthalpy 𝑑𝐻 = 𝑑𝑈 + 𝑃𝑑𝑉 + 𝑉𝑑𝑃 

                                   But 𝑑𝑈 = 𝑇 𝑑𝑆 − 𝑃𝑑𝑉 

∴ 𝒅𝑯 = 𝑻 𝒅𝑺 + 𝑽𝒅𝑷 … … … … … … (𝟑) 

 (a) For reversible isobaric process : dP = 0 ,dH = Tds = dQ 

 i.e. for an isobaric process, the change in enthalpy is equal to the heat absorbed. 

 (b) For an isobaric adiabatic process 𝑑𝑃 = 0 ;  𝑑𝑄 =  0 ∴ 𝑑𝐻 = 0 𝑜𝑟 𝐻 = 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

i.e. enthalpy remains constant in a reversible isobaric adiabatic process. 

3. Helmholtz Free Energy F: . Helmholtz free energy is defined as  F= U- TS 
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As U. T and S are state variables, F is also a state variable. F' has dimensions of energy. According to 

fiist and second law of thermodynamics, 

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑑𝑊 

 If the system is maintained at a constant temperature by exchanging heat continuously with the 

surrounding, then,𝑇𝑑𝑆 = 𝑑( 𝑇𝑆)   ∴ 𝑑𝑈 = 𝑑(𝑇𝑆) − 𝑑𝑊      𝑜𝑟 

 𝑑(𝑈 − 𝑇𝑆) = −𝑑𝑊            𝑜𝑟             𝑑𝐹 =  −𝑑𝑊 … … … . . (4) 

 where F= (U- TS) is known as Helmholtz free energy or Helmholtz work function. 

 Now 𝑑𝐹 =  𝑑(𝑈 −  𝑇𝑆) =  𝑑𝑈 −  𝑇𝑑𝑆 –  𝑆𝑑𝑇 

𝐵𝑢𝑡  𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 

∴ 𝑑𝐹 = −𝑃𝑑𝑉 –  𝑆𝑑𝑇 … … … … … … . . (5)  

This equation gives the change in Helmholtz free energy during an infinitesimal reversible process.  

(a) For reversible isothermal process:  𝑑𝑇 = 0 ∴ 𝑑𝐹 = −𝑃𝑑𝑉  𝑜𝑟  𝑃𝑑𝑉 = −𝑑𝐹   

Thus, the work done in a reversible isothermal process is equal to the decrease in Helmholtz free 

energy. 

(b) For isothermal isochoric process:  𝑑𝑇 = 0  𝑎𝑛𝑑 𝑑𝑉 = 0 ∴ 𝑑𝐹 = 0 𝑜𝑟 𝐹 = 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

i.e. the Helmholtz free energy remains constant during isothermal isochoric process.. 

 4. Gibbs Function G or Gibbs Free Energy.: Gibbs function (G) was called by Duhem the 

thermodynamical potential at constant pressure. This is defined by the equation. 

𝐺 = 𝑈 − 𝑇𝑆 + 𝑃𝑉 … … … … … … (6) 

 As F= U- TS, therefore, we can write  𝐺 = 𝐹 + 𝑃𝑉 … … … … . . (7) 

This gives the relation between Gibbs function and Helmholtz function. An enthalpy H = U+ PV. 

Therefore, equation (6) becomes  

𝐺 =  𝐻 −  𝑇𝑆    𝑜𝑟    𝑯 =  𝑮 +  𝑻𝑺 … … … … . . (8) 

Enthalpy = Gibbs free energy + latent heat 

 (a) For an isothermal process: TdS = d (TS) 

 (b) For an isobaric process: dP =0  

Hence, if the process is isothermal and isobaric then dH = d (TS)  or  d (H-TS) = 0 dG = 0 or G=a 

constant where G= H- TS is known as thermodynamic potential at constant pressure; or Gibbs 

function or Gibbs free energy.  

 Significance of Thermodynamic Potentials: A mechanical system is said to be in stable equilibrium 

when the potential energy of the system is minimum. It means that the system must proceed in such a 

direction so as to acquire minimum potential energy. This what we observe in nature, viz. water flows 

from a higher level to lower level, clectric current flows from higher to lower potential, heat flows from 

higher to lower temperature, a body falls from higher to lower potential due to gravitational field and so 
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on. In thermodynamics, the behavior of internal energy (U), enthalpy (H),Helmholtz free energy (F), , 

and Gibbs free energy (G) is similar to potential energy in mechanics. As we have seen, the direction of 

isothermal-isochoric process is to make Helmholtz free energy (F) minimum. In isothermal isobaric 

process, Gibbs free energy (G) tends to be minimum. In an isobaric-adiabatic process, the enthalpy (H) 

tends to be minimum. Since the four functions U, F, H and G play in thermodynamics the same role as 

played by potential energy in mechanics, they are called thermodynamic potentials. 

Relations of thermodynamical potentials with their variables : 

The four quantities U (S, V), F (T, V), H (S, P) and G(P, T) are called thermodynamic potentials 

because the themodynamic variables S, T, P and V can be derived from them by their differentiations 

with  respect to the independent variables associated with them.  

1. Thermodynamical potential U( S,V): According to fiist and second law of thermodynamics, 

Change in internal energy,  𝑑𝑈 = 𝑑𝑄 − 𝑃𝑑𝑉    𝑂𝑟 𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉   𝑠𝑖𝑛𝑐𝑒 𝑑𝑄 = 𝑇𝑑𝑆   

Taking partial differentials of internal energy U with respect to variable S (entropy), we have  

   (
𝜕𝑈

𝜕𝑆
)

𝑉
= 𝑇  𝑎𝑛𝑑    (

𝜕𝑈

𝜕𝑉
)

𝑆
= −𝑃 − − − − − − − − − − − − − (1) 

These are the relations connecting the internal energy U with thermodynamical variables S, V, T and P. 

 Since dU is a perfect differential (i.e. U is a single valued), we have  

 [
𝝏

𝝏𝑽
    (

𝝏𝑼

𝝏𝑺
)

𝑽
] = [

𝝏

𝝏𝑺
    (

𝝏𝑼

𝝏𝑽
)

𝑺
]     𝒐𝒓     (

𝝏𝑻

𝝏𝑽
)

𝑺
= −    (

𝝏𝑷

𝝏𝑺
)

𝑽
… … … . (𝟐) 

 This is Maxwell's first thermodynamical relation. 

2. Thermodynamic Potential F(T, V): The Helmholtz function or Helmholtz free energy is given by 

𝐹 =  𝑈 −  𝑇𝑆    ∴ 𝑑𝐹 =  𝑑(𝑈 −  𝑇𝑆) =  𝑑𝑈 −  𝑇𝑑𝑆 –  𝑆𝑑𝑇 

𝐵𝑢𝑡  𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 

∴ 𝑑𝐹 = −𝑃𝑑𝑉 –  𝑆𝑑𝑇 

Taking partial differential of Helmholtz function F with respect to T and V, we get  

   (
𝜕𝐹

𝜕𝑇
)

𝑉
= −𝑆   𝑎𝑛𝑑    (

𝜕𝐹

𝜕𝑉
)

𝑇
= −𝑃 − − − − − − − − − − − − − (3) 

Since dF is a perfect differential, 

[
𝝏

𝝏𝑽
    (

𝜕𝐹

𝜕𝑇
)

𝑉
 ] = [

𝝏

𝝏𝑻
    (

𝝏𝑭

𝝏𝑽
)

𝑻
]     𝒐𝒓     (

𝝏𝑺

𝝏𝑽
)

𝑻
= −    (

𝝏𝑷

𝝏𝑻
)

𝑽
… … … . (𝟒) 

This is Maxwell's second thermodynamical relation. 

3. Thermodynamic Potential H(S, P):  The enthalpy (H) is given by  

𝐻 = 𝑈 + 𝑃𝑉                 Differentiating 

𝑑𝐻 = 𝑑𝑈 + 𝑃𝑑𝑉 + 𝑉𝑑𝑃           𝑏𝑢𝑡  𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉          

∴ 𝑑𝐻 = 𝑇𝑑𝑆 + 𝑉𝑑𝑃 
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 Taking partial differential of enthalpy H with respect to S and P, we get 

   (
𝜕𝐻

𝜕𝑆
)

𝑃
=   𝑇   𝑎𝑛𝑑    (

𝜕𝐻

𝜕𝑃
)

𝑆
= 𝑉 − − − − − − − − − − − − − (5) 

Since dH is  a perfect differential,  

[
𝝏

𝝏𝑷
    (

𝝏𝑯

𝝏𝑺
)

𝑷
 ] = [

𝝏

𝝏𝑺
    (

𝝏𝑯

𝝏𝑷
)

𝑺
]     𝒐𝒓     (

𝝏𝑻

𝝏𝑷
)

𝑺
=   (

𝝏𝑽

𝝏𝑺
)

𝑷
… … … . (𝟔) 

This is Maxwell's third thermodynamical relation.  

4. Thermodynamic Potential G (P, T): The Gibbs function (G) is given by 

𝐺 = 𝐻 − 𝑇𝑆                 Differentiating, we get  

𝑑𝐺 = 𝑑𝐻 − 𝑇𝑑𝑆 − 𝑆𝑑𝑇            𝑏𝑢𝑡  𝑑𝐻 = 𝑇𝑑𝑆 +  𝑉𝑑𝑃          

 ∴ 𝑑𝐺 = 𝑉𝑑𝑃 − 𝑆𝑑𝑇 

Taking partial differential of Gibbs function G with respect to P and T, we get 

   (
𝜕𝐺

𝜕𝑃
)

𝑇
=   𝑉   𝑎𝑛𝑑    (

𝜕𝐺

𝜕𝑇
)

𝑃
=  −𝑆  − − − − − − − − − − − − − (7) 

Since dG is a perfect differential,  

[
𝝏

𝝏𝑻
    (

𝜕𝐺

𝜕𝑃
)

𝑇
 ] = [

𝝏

𝝏𝑷
    (

𝜕𝐺

𝜕𝑇
)

𝑃
]     𝒐𝒓     (

𝝏𝑽

𝝏𝑻
)

𝑷
=  − (

𝝏𝑺

𝝏𝑷
)

𝑻
… … … . (𝟖) 

This is Maxwell's fourth thermodynamical relation. 
Thus, the thermodynamical variables S, T, P and V can be written by using equations (1),(3), (5) and (7). 

𝑆 = −   (
𝜕𝐺

𝜕𝑇
)

𝑃
= −   (

𝜕𝐹

𝜕𝑇
)

𝑉
 

𝑇 =    (
𝜕𝑈

𝜕𝑆
)

𝑉
=    (

𝜕𝐻

𝜕𝑆
)

𝑃
 

𝑃 =  − (
𝜕𝑈

𝜕𝑉
)

𝑆
=  − (

𝜕𝐹

𝜕𝑉
)

𝑇
 

𝑉 =    (
𝜕𝐻

𝜕𝑃
)

𝑠
=    (

𝜕𝐺

𝜕𝑃
)

𝑇
 

These equations give the values of thermodynamical variables in terms of thermodynamical potentials. 

 

First order phase transitions: The changes of phase which take place at constant temperature and 

pressure and in which heat either absorbed or evolved during change of phase are called first order 

phase order phase transitions. In first order phase order phase transitions, the entropy and density (or 

volume) change. The Gibbs function G remains constant in both phases; while its derivative with respect 

to temperature and pressure is discontinuous at transition point.  

Consider an enclosure containing a liquid and its saturated vapour in equilibrium. If this system 

undergoes an isothermal, isobaric change, then 

𝑔1 = 𝑔2 … … … … … … . . (1) 

Let the temperature of the system be increased from T to T + dT. For equilibrium 

𝑔1 +  𝑑𝑔1 = 𝑔2 + 𝑑𝑔2 … … … … … … . . (2)   Or 
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 𝑑𝑔1 = 𝑑𝑔2 … … … … … … . . (3)    

If the condition of saturation is satisfied, 

   (
𝑑𝑔1

𝑑𝑇
)

𝑠𝑎𝑡 
=    (

𝑑𝑔2

𝑑𝑇
)

𝑠𝑎𝑡 
… … … … … … . (4) 

 

The pressure also changes from P to P+ dP, 

  ∴ 𝑑𝑔1 =    (
𝜕𝑔1

𝜕𝑇
)

𝑃 
𝑑𝑇 +    (

𝜕𝑔1

𝜕𝑃
)

𝑇 
𝑑𝑃 … … … … … … … … … … … . (5)     Or  

(
𝜕𝑔1

𝜕𝑇
) =    (

𝜕𝑔1

𝜕𝑇
)

𝑃 
+    (

𝜕𝑔1

𝜕𝑃
)

𝑇 
(

𝜕𝑃

𝜕𝑇
) … … … … … . . (6) 

But, for a unit mass, 

𝑑𝐺 = 𝑉𝑑𝑃 − 𝑆𝑑𝑇 … … … … … … (7) 

 ∴   (
𝜕𝐺

𝜕𝑃
)

𝑇
=   𝑉   𝑎𝑛𝑑    (

𝜕𝐺

𝜕𝑇
)

𝑃
=  −𝑆   

 

Substituting these values in equation (6) 

   (
𝑑𝑔1

𝑑𝑇
)

𝑠𝑎𝑡 
=  −𝑆1 +  𝑉1   (

𝜕𝑃

𝜕𝑇
)

𝑠𝑎𝑡 
   Similarly    (

𝑑𝑔2

𝑑𝑇
)

𝑠𝑎𝑡 
=  −𝑆2 +  𝑉2   (

𝜕𝑃

𝜕𝑇
)

𝑠𝑎𝑡 
   

 

Substituting these values in equation (4) 

−𝑆1 +  𝑉1   (
𝜕𝑃

𝜕𝑇
)

𝑠𝑎𝑡 
= −𝑆2 +  𝑉2   (

𝜕𝑃

𝜕𝑇
)

𝑠𝑎𝑡 
                oR 

   (
𝑑𝑃

𝑑𝑇
)

𝑠𝑎𝑡 
=   (

𝑆2 − 𝑆1

𝑉2 − 𝑉1
)     𝐵𝑢𝑡  𝑆2 − 𝑆1 =

𝑑𝑄

𝑇
=

𝐿

𝑇
 

∴     
𝑑𝑃

𝑑𝑇
=

𝐿

𝑇(𝑉2 − 𝑉1)
    … … … … … … (7) 

𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 (𝟕)𝒊𝒔  𝑪𝒍𝒂𝒖𝒔𝒊𝒖𝒔 − 𝑪𝒍𝒂𝒑𝒆𝒚𝒓𝒐𝒏 𝒍𝒂𝒕𝒆𝒏𝒕 𝒉𝒆𝒂𝒕 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 

Second order phase transitions: Ehrenfest's Equations : 

Some recent investigations have revealed that during phase change there is no transference of heat and 

there is no change of volume. It has been found in the case of transition from liquid helium I to liquid 

helium II, that there is no transfer of heat and no change in volume. Such transitions are called second 

order phase transitions. Second order phase transitions can be defined as the phenomenon that takes place 

with no change in entropy and volume at constant temperature and pressure. 

Example : The examples of second order phase transitions are:  

1. Transition of liquid helium I to liquid helium Il, at λ point (2.19 K)  

2. Transition of a ferromagnetic material to a paramagnetic material at the Curie point.. 

 3. Transition of a superconducting metal into an ordinary conductor in the absence of a magnetic field 

 4. Order-disorder transitions in chemical compounds and alloys. 

 In the case of second-order phasc transitions there is no discontinuity of    (
𝜕𝐺

𝜕𝑃
)

𝑇
   𝑎𝑛𝑑    (

𝜕𝐺

𝜕𝑇
)

𝑃
 

However, the second order derivatives change discontinuously. For a phase transition  

𝑔1 = 𝑔2    ⇒   𝑔2 −   𝑔1 = 0 … … … … … (1) 

−  (
𝜕𝑔2

𝜕𝑇
)

𝑃 
+    (

𝜕𝑔1

𝜕𝑇
)

𝑃 
= 𝑆2 − 𝑆1 = 0 … … … … … . (2)  
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  (
𝜕𝑔2

𝜕𝑇
)

𝑃 
−    (

𝜕𝑔1

𝜕𝑇
)

𝑃 
= 𝑉2 − 𝑉1 = 0 … … … … … . (3) 

𝐴𝑙𝑠𝑜, 𝐶𝑃 = 𝑇   (
𝜕𝑆

𝜕𝑇
)

𝑃 
 

𝐶𝑃

𝑇
=    (

𝜕𝑆

𝜕𝑇
)

𝑃 
=  

𝜕

𝜕𝑇
[ − (

𝜕𝑔

𝜕𝑇
)]𝑃 =  −   (

𝜕2𝑔

𝜕𝑇2
)

𝑃 

… … . . … … (4) 

𝐾 =  −
1

𝑉
   (

𝜕𝑉

𝜕𝑃
)

𝑇 
⇒ 𝐾𝑉 = −   (

𝜕𝑉

𝜕𝑃
)

𝑇 
=  −

𝜕

𝜕𝑃
   (

𝜕𝑔

𝜕𝑃
)

𝑇 
  Or 

𝐾𝑉 =  −    (
𝜕2𝑔

𝜕𝑃2
) 𝑇 … … … … … … … … (5) 

𝛼 =
1

𝑉
   (

𝜕𝑉

𝜕𝑇
)

𝑃 
⇒  𝛼𝑉 =    (

𝜕𝑉

𝜕𝑇
)

𝑃 
=

𝜕

𝜕𝑇
   (

𝜕𝑔

𝜕𝑃
)

𝑇 
   oR 

𝛼𝑉 =  
𝜕2𝑔

𝜕𝑇𝜕𝑃
… … … … … . . (6) 

Here K is the isothermal compressibility and is the volume coefficient of expansion. From equation (4) 

𝐶𝑃1

𝑇
=    (

𝜕2𝑔1

𝜕𝑇2
)

𝑃 

… … … … … (7) 𝑎𝑛𝑑
𝐶𝑃2

𝑇
=    (

𝜕2𝑔2

𝜕𝑇2
)

𝑃 

… … … (8)  

Subtracting (8) from (7) 

   (
𝜕2𝑔2

𝜕𝑇2 )
𝑃 

−    (
𝜕2𝑔1

𝜕𝑇2 )
𝑃 

=
𝐶𝑃1

𝑇
−

𝐶𝑃2

𝑇
… … … . (9)    

Similarly from equation (5) and (6)  

   (
𝜕2𝑔2

𝜕𝑃2 ) 𝑇 −    (
𝜕2𝑔1

𝜕𝑃2 ) 𝑇 = 𝑉( 𝐾1 − 𝐾2) ……………(10) 

(
𝜕2𝑔2

𝜕𝑇𝜕𝑃
) −

𝜕2𝑔1

𝜕𝑇𝜕𝑃
= 𝑉( 𝛼2 − 𝛼1) … … … . . (11) 

For second order phase transitions, there is no change in entropy and volume. 

∴  𝑺𝟏 = 𝑺𝟐                     (𝑎𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑠 𝑇 𝑎𝑛𝑑 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑃) 

∴   𝑺𝟏 +  𝒅𝑺𝟏  = 𝑺𝟐 + 𝒅𝑺𝟐                     (𝑎𝑡 𝑡𝑒𝑚𝑝. 𝑇 +  𝑑𝑇 𝑎𝑛𝑑 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑃 +  𝑑𝑃)     

∴    𝑑𝑆1  = 𝑑𝑆2    … … … . . (12)                  But 

𝑑𝑆 =     (
𝜕𝑆

𝜕𝑇
)

𝑃
𝑑𝑇 +    (

𝜕𝑆

𝜕𝑃
)

𝑇
𝑑𝑃          𝑂𝑟 

𝑑𝑆 =
𝐶𝑃

𝑇
. 𝑑𝑇 −    (

𝑑𝑉

𝑑𝑇
)

𝑃
𝑑𝑃            

𝑑𝑆 = (
𝐶𝑃

𝑇
. ) 𝑑𝑇 − 𝑉𝛼1𝑑𝑃   

𝑑𝑆1 = (
𝐶𝑃1

𝑇
) 𝑑𝑇 − 𝑉𝛼1𝑑𝑃                𝑎𝑛𝑑            𝑑𝑆2 = (

𝐶𝑃2

𝑇
) 𝑑𝑇 − 𝑉𝛼2𝑑𝑃   

 ∴     (
𝐶𝑃1

𝑇
) 𝑑𝑇 − 𝑉𝛼1𝑑𝑃     =  (

𝐶𝑃2

𝑇
) 𝑑𝑇 − 𝑉𝛼2𝑑𝑃   
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∴   (
𝑑𝑃

𝑑𝑇
) =  

𝐶𝑃2
− 𝐶𝑃1

𝑇𝑉( 𝛼2 − 𝛼1)
 − − − − − − − − − − − − − − − − − − − (13) 

Similarly by assuming V1 = V2 for second order phase transition, 

∴  𝑽𝟏 = 𝑽𝟐                     (𝑎𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑠 𝑇 𝑎𝑛𝑑 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑃) 

∴   𝑽𝟏 +  𝒅𝑽𝟏  = 𝑽𝟐 + 𝒅𝑽𝟐                     (𝑎𝑡 𝑡𝑒𝑚𝑝. 𝑇 +  𝑑𝑇 𝑎𝑛𝑑 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑃 +  𝑑𝑃)     

∴    𝑑𝑉1  = 𝑑𝑉2    … … … . . (14)                  But 

𝑑𝑉 =     (
𝜕𝑉

𝜕𝑇
)

𝑃
𝑑𝑇 +    (

𝜕𝑉

𝜕𝑃
)

𝑇
𝑑𝑃           

𝑑𝑉 = 𝑉𝛼 𝑑𝑇 − 𝑉𝐾𝑑𝑃 

𝑑𝑉1 = 𝑉𝛼1 𝑑𝑇 − 𝑉𝐾1𝑑𝑃           𝑎𝑛𝑑     𝑑𝑉2 = 𝑉𝛼2 𝑑𝑇 − 𝑉𝐾2𝑑𝑃    

∴ 𝑉𝛼1 𝑑𝑇 − 𝑉𝐾1𝑑𝑃   = 𝑉𝛼2 𝑑𝑇 − 𝑉𝐾2𝑑𝑃    

∴  
𝑑𝑃

𝑑𝑇
  = (

𝛼2 − 𝛼1

𝐾2 − 𝐾1
) … … … … … (15) 

 Equations (13) and (15) are called Ehrenfest's Equations. These equations represent the condition of 

equilibrium between the two phases. 

 


