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UNIT-3      MAGNETOSTATICS 

Syllabus: Overview of basics of Magnetostatics, Statement of Biot-Savart’ law, derive the 

expression for magnetic field due to Straight conductor carrying current, mention the expression 

for the field along the axis of a circular coil and discuss the special cases. Tangent law, Helmholtz 

galvanometer-principle, construction and working. Ampere’s circuital law-statement, proof and its 

applications (for D. C.) to derive the magnetic field due to Solenoid and Toroid. 

 INTRODUCTION:  

Earlier electricity and magnetism were treated as separate subjects. Electricity dealt with interactions 

of charged bodies while magnetism dealt with interactions of magnets and compass needles. 

However, in 1820, it was realized that they were intimately related. Experiments of Danish scientist 

H.C Oersted showed that a compass needle deflected by passing electric current through a wire near 

the needle. From these experiments, Oersted concluded that electric current through a conductor 

produces magnetic field in the surrounding space. Ampere supported this observation by saying that 

electric charges in motion produce magnetic fields. Michael Faraday showed that moving magnets 

or changing magnetic fields generate electricity. Maxwell unified the laws of electricity and 

magnetism and developed a new field called electromagnetism. Most of the phenomenon occurring 

around us can be described under electromagnetism.  

 AMPERE’S SWIMMING RULE:  

Imagine a man swimming along the wire in the direction of current with his face always turned 

towards the needle such that current enters his feet and leaves at his head. Then, the north pole ( N-

pole) of the magnetic needle will be deflected towards his left hand.  

MAGNETIC FORCE ON A MOVING CHARGE, LORENZ FORCE        

Consider a positively charged particle q moving with a velocity v in a magnetic field of strength B 

as shows in the diagram. The force experienced by the charge is given by 

i. The magnitude of the force F⃗  is directly proportional to strength of the magnetic field applied 

i.e.  F∝ 𝐵 

ii. The magnitude of the force is directly proportional to the magnitude of the charge i.e. F∝ 𝑞 

and 

iii. The magnitude of the force is directly proportional to component of the velocity  in the 

direction perpendicular  to the direction of field, i.e. F∝ 𝑠𝑖𝑛𝜃 

     F⃗  α  qvBsinθ     Or     F⃗ = kqvBsinθ                    where K is constant of proportionality and k= 1 

∴ 𝐅 = 𝐪𝐯𝐁𝐬𝐢𝐧𝛉     …………………….(1)       
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Equation (1) can be written in vector form as       

   𝐅 = 𝐪(𝐯⃗  𝐱 𝐁⃗⃗ ) …………………(𝟐)               

Special Cases: 

 Consider F = qvB sin. If v = 0, F = 0 i.e., a charged particle at rest in a magnetic field 

experiences no force i.e. magnetic field do not interact with stationary charge. 

 If = 0o or 180o, F = 0 i.e., a charged particle moving parallel or anti parallel to the direction 

of the field experiences no force.  

 If  = 90o, F will be maximum and its value is given by Fmax = qvB 

 When q=0, F=0, hence the force on neutral particle is zero 

Note: 

 An electric charge q moving with a velocity v in a region having magnetic field B and 

electric field E will experience a resultant force 𝑭⃗⃗ = 𝒒𝑬⃗⃗ + 𝒒(𝒗⃗⃗ 𝑿𝑩⃗⃗ ) = 𝒒(𝑬⃗⃗ + 𝒗⃗⃗ 𝑿𝑩⃗⃗ ) ----------------

(3) 

This relation is called Lorentz relation and the resultant force is called the Lorentz force. 

 As the force acts along a direction at right angles to direction of motion of the charge, the 

work done is zero. Thus there is no change in magnitude of velocity of the charge but only It 

is maximum when the conductor is perpendicular to the magnetic field ( i.e.   = 900)     

   This maximum value of the force is F = I l B.  

BIOT-SAVARTS LAW: 

Biot- Savart’s law (or Laplace’s law) helps to calculate   the magnetic field dB at a point  outside the  

conductor due to a small length dl of the conductor carrying current I. The law is stated as follows:  

 The magnetic field dB at a point due to a current element  𝐼𝑑𝑙 is 

 Directly proportional to the strength of the electric current I 

 Directly proportional to the length dl of the current element, 

 Directly proportional to the sine of the angle between the current 

element and line joining the point of observation with the current element i.e, 

 𝑠𝑖𝑛𝜃 and 

 Inversely proportional to the square of the distance r of the point 

from the current element. 

           Consider a conductor XY through which the current is I. Let AB be a small element of a 

length 𝑑𝑙. Let P be a point at a distance r from the centre O of the element and  be the angle 

between the current element and the line OP. If dB is the magnetic field at P due to the current 

element AB, then  
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   𝑑𝐵 ∝
    𝐼 𝑑𝑙 𝑠𝑖𝑛𝜃

𝑟2      or       𝑑𝐵 = 𝐾
    𝐼 𝑑𝑙 𝑠𝑖𝑛𝜃

𝑟2         Where K is a constant.                                             

  In SI units,  𝐾 = (
𝜇0

4
)     Where o = 4 x 10-7    TmA-1 is called absolute permeability of free space 

or vacuum.               

                   ∴ 𝑑𝐵 =   ( 
𝜇0

4
)

    𝐼 𝑑𝑙 𝑠𝑖𝑛𝜃

𝑟2    ……………………………. (1)   

       In vector form, Biot – Savart’s law is written as    

                     𝐝𝐁⃗⃗⃗⃗  ⃗ = ( 
𝝁𝟎

𝟒
)

𝑰 𝒅𝒍⃗⃗⃗⃗  𝑿 𝒓⏞

𝒓𝟑        ……………………..                  (2)      

The direction of dB is perpendicular to the plane containing dl and r (r is called displacement vector 

along OP).  When =0, we get dB=0,                         

Thus the magnetic field at any point on a thin current carrying conductor itself is zero. 

 

Magnetic field at a point due to an infinitely long straight conductor carrying current: 

Consider a conductor carrying current I. let us consider a small element AB of length dl and join its 

mid point to the point P where a magnetic field is to be determined. Let r be the distance of the 

element from the point P and ‘R’ is the perpendicular distance from the conductor.  

According to Biot –Savart’s law, the magnetic field at point P due to current carrying element ‘dl’ is 

given by  

𝒅𝑩 = (
𝝁𝟎

𝟒𝝅
)

𝑰𝒅𝒍 𝐬𝐢𝐧 (
𝝅

𝟐
+𝜽 )

𝒓𝟐        = (
𝝁𝟎

𝟒𝝅
)

𝑰𝒅𝒍  𝐜𝐨𝐬𝜽 

𝒓𝟐       ………   (1)   

In a right angled triangle OPQ,   tan 𝜃 =  
𝑙

𝑅  
  ⇒ 𝑙 = 𝑅 𝑡𝑎𝑛𝜃 

Differentiating         𝑑𝑙 = 𝑅 𝑠𝑒𝑐2 𝜃 𝑑𝜃        𝑎𝑙𝑠𝑜 𝑟 = 𝑅 𝑠𝑒𝑐 𝜃  

Substituting these values in equation (1) we have  

𝑑𝐵 = (
𝜇0

4𝜋
)
𝐼𝑅 𝑠𝑒𝑐2 𝜃 𝑑𝜃 𝑐𝑜𝑠𝜃

(𝑅 𝑠𝑒𝑐 𝜃)2
 

𝑑𝐵 = (
𝜇0

4𝜋
)
𝐼 𝑐𝑜𝑠𝜃𝑑𝜃

𝑅
     

Hence the total magnetic field at the point P due to the entire conductor is given by  

𝐵 = ∫𝑑𝐵 = (
𝜇0

4𝜋
)
𝐼 

𝑅
∫ 𝑐𝑜𝑠𝜃𝑑𝜃

𝜃2

𝜃1

 =  (
𝜇0

4𝜋
)
𝐼 

𝑅
 (sin 𝜃2 +  𝑠𝑖𝑛𝜃1)  

For infinitely long conductor,  𝜃1 = 𝜃2 =
𝜋

2
 

∴   𝐁 = (
𝛍𝟎

𝟒𝛑
)

𝐈 

𝐑
 (𝟏 + 𝟏)        𝐨𝐫               𝐁 =  

𝛍𝟎  𝐈

𝟐𝛑𝐑
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Expression for magnetic field at a point on the axis of a circular coil carrying current: 

 

Consider a circular coil of radius r carrying a current Iand having ‘n’ number of turns. Let P be a 

point at a distance x from the centre O of the loop on the axis as shown in fig.  AB and AB are two 

diametrically opposite current elements each of length dl .The distance of the point P from these 

current elements be equal to ‘a’   

             B=  ( 
𝝁𝟎

𝟒
) 

𝟐𝝅𝑰𝒓𝟐

𝐚𝟑      or    B  =  ( 
𝝁𝟎

𝟒
) 

𝟐𝝅𝒏𝑰𝒓𝟐 

(𝐫𝟐 +𝐱𝟐 ) 𝟑/𝟐      
……………… . (𝟏) along PX  

The direction of the magnetic field at any point on the axis of a circular loop carrying current is 

along the axis of the loop. If the plane of the coil is in the y-z plane, the magnetic field B is along the 

x-axis.  

 Discussion of special cases: 

i) When x= 0, i.e. at the centre of the coil , the magnetic field is,  

                        B=  ( 
𝝁𝟎

𝟒
) 

𝟐𝛑𝐧𝑰𝒓𝟐

(𝐫𝟐 +𝟎𝟐 ) 𝟑/𝟐      
 =    ( 

𝝁𝟎

𝟒
) 

𝟐𝛑𝐧𝑰𝒓𝟐  

     𝐫𝟑     
=  ( 

𝝁𝟎

𝟒
)

𝟐𝛑𝐧𝑰

     𝐫    
= 

𝝁𝟎𝒏𝑰

𝟐𝒓
 

ii) If ‘x’  is too large compared to the value of r then,  r may be neglected , now the eqn (1) 

becomes  

𝐁 = 
𝛍𝟎

𝟒
 
𝟐𝛑 𝐧𝐈𝐫𝟐

x3
 =

𝛍𝟎

𝟒
 
𝟐𝛑𝐫𝟐𝐧𝐈

x3
=

𝛍𝟎

𝟒
 
𝟐 𝐀𝐧𝐈

x3
                 since      𝛑𝐫𝟐 = A  

Now,   nIA = m   gives the magnetic dipole moment of the current carrying coil. 

𝐁 =  
𝛍𝟎

𝟐
 
𝐦

x3 

iii) From the equation (1), It is clear that at the center of the coil , The magnetic field at the 

centre of the loop is maximum and decreases along the axis on 

either side as the distance from the centre increases  as shown in 

figure .  

Tangent law:   A magnet pivoted in a horizontal plane consisting of 

two uniform fields perpendicular to each other will set itself in the 
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direction of the resultants of the fields. When there is only one uniform magnetic field, the magnet 

sets itself in the direction of B1. 

 

If another magnetic field B2 is applied perpendicular to B1, the magnet deflect through an angle θ 

and it sets itself in the direction of the resultant.( fig). The deflection θ is given by the relation  

  𝐭𝐚𝐧𝛉 =
𝐁𝟐

𝐁𝟏
   ⇒  𝐁𝟐 = 𝐁𝟏𝐭𝐚𝐧𝛉 − − − − − − − − − − − − − (𝟏)   

This is known as tangent law. 

 The equation (1) may be obtained more exactly in the following manner.  

When the field B2 is applied, the magnet is acted upon by two couples one due to B1 being equal to 

MB1sinθ and other due to B2 being equal to  𝑀𝐵2 Sin ( 90 −𝜃)   i,e.  𝑴𝑩𝟐 𝐜𝐨𝐬𝜽 (fig2). These two 

couples are in opposite directions because couple due to B2 tends to deflect it away from the original 

position and couple due to B1 tends to restore it into its initial position. In the equilibrium position, 

the two couples balance each other, 

∴ 𝑴𝑩𝟐 𝐜𝐨𝐬𝜽 =  𝑴𝑩𝟏 𝐬𝐢𝐧𝜽                     𝒊𝒆   𝑩𝟐 = 𝑩𝟏  𝐭𝐚𝐧 𝜽     

This principle is used in the construction of Tangent Galvanometer. 

Note:  

i) In practice B1 = BH , the horizontal; component of earth’s magnetic field  and B2 = B is the 

magnetic field due to coil carrying current. 

ii)  If B2 = B is called the deflecting field then BH is the controlling field. 

iii)  The equation   𝑩 =  𝑩𝑯  𝐭𝐚𝐧𝜽  holds well if and only if   both B and BH are uniform in the 

region in which the magnet is suspended.  

This is the reason why a short magnetic needle is used in the magnetic compass box. 

Helmholtz Galvanometer: 
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          In a tangent galvanometer, the magnetic field produced due to the current in a coil is uniform 

over a very small region at the centre of the coil. This requires very short magnetic needle to be 

pivoted at the centre of coil so that it can rotate in small region of uniform field. Helmholtz showed 

that this difficulty could be overcome and the uniform field over a considerable region could be 

produced by using two coils instead of one as in the case of a tangent galvanometer.  

           Helmholtz galvanometer is the modified form of TG. 

 

Construction: 

           It consists of two coils of radius ‘r’ each having an equal number of turns n. The coils are 

situated co-axially with their plane faces parallel to each other. The distance between their centers is 

equal to the radius ‘r’ of either coil. The coils are connected in series so that the direction of the 

current in both the coils is the same and hence the resultant field at the centre space of them is twice 

due to each coil. The magnetic needle is suspended at the central point of the two coils.  

 Principle:  

      When the current is passed through two coils, two magnetic fields are produced as shown in the 

fig. The coils are so connected that the direction of the flow of current in both the coils is the same 

and hence the intensity of magnetic field due to these coils is also in the same direction at any point 

on their common axis C1 C2. As we move from C1 towards C2 the magnetic field B increases due to 

C2 coils and that due to C1 decreases simultaneously. As a result, there is a uniform resultant 

magnetic field over the region between the coils.  

        The condition to get an uniform field over the region is that the rate of increase of field due to 

one coil must be equal to the rate of decrease of the field due to other coil in the same direction. If 

this condition is to be satisfied, then the rate of change of resultant field B with respect to the 

distance from one of coils should remain constant.  
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                                                                  i.e   
𝑑𝐵 

𝑑𝑥
= 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

                                                                           i.e         
𝑑2 𝐵

𝑑𝑥2  = 0 

  We know that the magnetic field produced at any point on the axis of a circular coil is given by 

B =   
𝜇0

4𝜋
 

2𝜋𝑛𝑙𝑟2

(𝑟2 + 𝑥2)3/2
    tesla 

=    
𝜇0

2
 

𝑛𝑙𝑟2

(𝑟2 + 𝑥2)3/2
   

=  
𝜇0𝑛𝑙𝑎2

2
(𝑟2 + 𝑥2)−3/2 

Differentiating this we have  

𝑑𝐵 

𝑑𝑥
=  

𝜇0𝑛𝑙𝑟2

2
[
−3

2
(𝑟2 + 𝑥2)−5/22𝑥] 

𝑑2 𝐵

𝑑𝑥2
= −

3𝜇0𝑛𝑙𝑟2

2
[(𝑎2 + 𝑥2)−5/2

−5

2
𝑥(𝑎2 + 𝑥2)−7/22𝑥] 

                                       5𝑥2(𝑟2 + 𝑥2)−7/2 = (𝑟2 + 𝑥2)−5/2 

                                        5𝑥2 = 𝑟2 + 𝑥2  

                                         4𝑥2 = 𝑟2 

                                         𝑥2 = 
𝑟2

4
 

                                           𝑥 = ±
𝑟

2
  

            Thus two coils must be kept at a distance of radius of the coil and the magnetic needle must 

be suspended at a distance of half the radius from each coil.  

             Since Helmholtz galvanometer consists of two coils, the resultant field at the point where 

the needle is suspended is given by (2B) 

                                     ∴ 𝐵 = 2 [
𝜇0𝑛𝑙𝑟2

2(𝑟2+ 𝑥2)3/2] 

                                        𝐵 =
𝜇0𝑛𝑙𝑟2

[𝑟2+ 
𝑟

4

2
]3/2

                    ∵ 𝑥 =  
𝑟

2
 

                                        𝐁 =  
𝟖𝛍𝟎𝐧𝐥

𝟓√𝟓𝐫
……………(𝟏)  

                   This field acts along the common axis of the coils.  

Working: 

            Before passing the current the planes of the coils are set into magnetic meridian. The 

distance between the coils must be equal to the radius of the coil. The deflection magnetometer must 

be kept between the coils so that its needle is at the distance of a/2 from each coil. When the current 

is passed through the coil, the needle gets deflected through the angle θ. 

                According to the tangent law we have  
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                                                Now B = BH tanθ  -----------(2) 

                                                Eqn. (1) = Eqn. (2) 

                                                    
8𝜇0𝑛𝑙

5√5𝑟
=BH tanθ    

                                             ∴ 𝐼 =
5√5𝑟BH

8𝜇0 𝑛
tanθ   

                                            𝐼 = 𝐾 tanθ   

   Where  𝐾 =
5√5𝑟BH

8𝜇0 𝑛
   is known as the reduction factor of the galvanometer.  

AMPER’S CIRCUITAL LAW: 

Statement:  It states that the line integral  of magnetic field B around  any  closed  curve  in air 

or vacuum is equal to 0 times the net current I through the area bounded by the curve. 

  i.e  ∮𝑩. 𝒅𝒍 = oI.       Where B is the magnetic field due to the current I.  

Note: This law plays the same in magnetostatics as Gauss’ law does in electrostatics. 

Proof: Consider a long straight conductor carrying current I perpendicular to the plane of the paper 

so that the current flows inwards  

The magnetic field at a distance r is given by  

𝐁 =  
𝛍𝟎  𝐈

𝟐𝛑𝐫
      and its direction is tangent to the circle of radius r.  

The field is constant at every point on the circle and parallel to the 

current element dl. 

The line integral is given by, 

  ∮𝑩.𝒅𝒍 =  ∮
𝛍𝟎  𝐈

𝟐𝛑𝐫
. 𝒅𝒍 =

𝛍𝟎  𝐈

𝟐𝛑𝐫
 ∮𝒅𝒍 = 

𝛍𝟎  𝐈

𝟐𝛑𝐫
(𝟐𝛑𝐫) = 𝛍𝟎𝐈    

∴ ∮𝑩. 𝒅𝒍 = oI    which is independent of radius r. Ampere’s circuital law is true for any assembly 

of current and any closed curve.  

  APPLICATIONS OF AMPERE CIRCUITAL LAW: 

1. MAGNETIC FIELD DUE TO A SOLENOID CARRYING CURRENT: 

    A solenoid consists of a long insulated wire wound in the form of a helix where neighboring turns 

are closely spaced. Each turn of wire in the solenoid can be regarded as circular loop. When current 
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flows through the solenoid, the net magnetic field is the vector sum of the fields due to all the turns. 

A long solenoid means that the length of the solenoid is large compared to its radius.  

    

 Let n be the number of turns per unit length of a long solenoid and I be the current flowing through 

the solenoid. Consider a rectangular Amperian loop pqrs near the middle of the solenoid as shown in 

fig. The line integral of magneticf field B along the path pqrs is  

∮ 𝐵⃗  • d𝐥⃗⃗  ⃗ 
𝑝𝑞𝑟𝑠

=∫ 𝐵⃗  • d𝐥⃗⃗  ⃗ 
𝑝𝑞

 + ∫ 𝐵⃗  • d𝐥⃗⃗  ⃗ 
𝑞𝑟

+ ∫ 𝐵⃗  • d𝐥⃗⃗  ⃗ 
𝑟𝑠

+ ∫ 𝐵⃗  • d𝐥⃗⃗  ⃗ 
𝑠𝑝

 -------------(1) 

Let pq = l. For path pq B and dl are along the same direction. 

 ∴ ∫ 𝐵⃗  • d𝐥⃗⃗  ⃗ 
𝑝𝑞

= ∫𝐵. 𝑑𝑙 = 𝐵𝑙 

For the path qr and sp B and dl are mutually perpendicular  

∴ ∫ 𝐵⃗  • d𝐥⃗⃗  ⃗ 

𝑞𝑟

= ∫ 𝐵⃗  • d𝐥⃗⃗  ⃗ 

𝑠𝑝

= ∫𝐵. 𝑑𝑙 𝑐𝑜𝑠90 = 0 

For path rs, B = 0 (since field is zero outside the solenoid)  

∴ ∫ 𝐵⃗  • d𝐥⃗⃗  ⃗ = 𝟎

𝑟𝑠

 

Equation 1 becomes 

∮ 𝐵⃗  • d𝐥⃗⃗  ⃗ 
𝑝𝑞𝑟𝑠

=∫ 𝐵⃗  • d𝐥⃗⃗  ⃗ 
𝑝𝑞

= ∫𝐵. 𝑑𝑙 = 𝐵𝑙       -----------(2) 

 From Ampere’s circuital law, 

    ∮ 𝐵⃗  • d𝐥⃗⃗  ⃗ 
𝑎𝑏𝑐𝑑

 =   o  x  net current enclosed by the path   

             i .e. Bl = o   x  nlI     

            B= o  nI    ------------------ (3)   

Note: The magnetic field at a point near the end of the solenoid is found to be equal to = 
µ0𝑛𝐼

2
   

2.   MAGNETIC FIELD DUE TO CURRENT IN A TOROID:  
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  The toroid is a hollow circular ring on which a large number of turns of a wire are closely wound. 

In fact, a toroid is an endless solenoid in the form of a ring or a solenoid bent into a circular shape to 

close on itself. 

Let n be the number of turns per unit length of toroid and I be current flowing through it. Point P is 

within the toroid while Q is inside and point R outside. By symmetry, direction of B at any point is 

tangential to a circle drawn through that point with same centre as that of toroid. The magnitude of 

B at any point of such a circle will be constant.  

Let us consider a point p within the toroid, let us draw a circle of radius r through it.  

Appling Ampere’s circuital law to this circle we have  

 ∮𝑩. 𝒅𝒍 = oI     where I is the net current enclosed by the circle. 

𝑵𝒐𝒘   ∮𝑩. 𝒅𝒍 = B(𝟐𝛑𝐫) and I = n I0 

Where ‘n’ is the total no of turns in the toroid and I0 is the 

current in each turn of the toroid. 

Therefore, equation 1 becomes,  

B(𝟐𝛑𝐫) = o n I0   

Or,        𝐁 =  
𝛍𝟎

𝟐
 
nI0

r
 

Thus the magnetic field B varies with r.  

If ‘l’ is the mean circumference of the toroid   then, l = 2πr   so 

that 

𝐁 =
𝛍𝟎𝐧𝐈𝟎

𝒍
 

The field B at an inside point Q is zero because there is no current enclosed by the circle through Q.  

The field B at an outside point such as R is also zero because net current enclosed in the circle 

through r will be zero. This is because each term of the winding passes twice through this area 

enclosed by the circle, carrying equal currents in opposite directions. Thus, the field of a toroid is 

zero at all point except within the core.  


